Positive least energy solutions for k-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case

نویسندگان

چکیده

In this paper, we study the following k-coupled nonlinear Schrödinger system with Sobolev critical exponent: $$\begin{aligned} \left\{ \begin{aligned} -\Delta u_i&+\lambda _iu_i =\mu _i u_i^{2^*-1}+\sum _{j=1,j\ne i}^{k} \beta _{ij} u_{i}^{\frac{2^*}{2}-1}u_{j}^{\frac{2^*}{2}} \quad \hbox {in}\;\Omega ,\\ u_i&>0 {in}\; \Omega {and}\quad u_i=0 {on}\;\partial , i=1,2,\dots k. \end{aligned} \right. \end{aligned}$$ Here $$\Omega \subset {{\mathbb {R}}}^N $$ is a smooth bounded domain, $$2^{*}=\frac{2N}{N-2}$$ exponent, $$-\lambda _1(\Omega )<\lambda _i<0, \mu _i>0$$ and _{ij}=\beta _{ji}\ne 0$$ where $$\lambda )$$ first eigenvalue of $$-\Delta Dirichlet boundary condition. We characterize positive least energy solution for purely cooperative case $$\beta _{ij}>0$$ in higher dimension $$N\ge 5$$ . Since much more delicate, shall introduce idea induction. point out that key to give accurate upper bound energy. It interesting see decreases as k grows. Moreover, establish existence limit $${\mathbb {R}}^N$$ well classification results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nondegeneracy result for least energy solutions to a biharmonic problem with nearly critical exponent

Consider the problem ∆2u = c0K(x)uε , u > 0 in Ω, u = ∆u = 0 on ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 5), c0 = (N − 4)(N − 2)N(N + 2), p = (N + 4)/(N − 4), pε = p− ε and K is a smooth positive function on Ω. Under some assumptions on the coefficient function K, which include the nondegeneracy of its unique maximum point as a critical point of HessK, we prove that least energy soluti...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Solutions of an Elliptic System with a Nearly Critical Exponent

This problem has positive solutions for ǫ > 0 (with pqǫ > 1) and no non-trivial solution for ǫ ≤ 0. We study the asymptotic behaviour of least energy solutions as ǫ → 0. These solutions are shown to blow-up at exactly one point, and the location of this point is characterized. In addition, the shape and exact rates for blowing up are given. Résumé. Considéré le problème −∆uǫ = v p ǫ vǫ > 0 en Ω...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fixed Point Theory and Applications

سال: 2021

ISSN: ['1661-7746', '1661-7738']

DOI: https://doi.org/10.1007/s11784-021-00923-8